Synthetic Geometry

Matthew Brennan

1 Introduction

This handout includes a rough outline of the solutions presented in the talk and a list of some common theorems and results useful in many geometry problems. Many of the theorems and lemmas listed have interesting proofs and it is recommended that you try to prove some of them. The solutions to the examples are outlines which are intended to illustrate certain techniques. In some cases, calculations and dealing with special diagram cases are omitted.

2 Warmup

Here are two problems to start, both of which have short clean solutions. The first warmup applies a transformation after which the result becomes much clearer. The solution to the second warmup shifts the focus to a new triangle after which the problem becomes tractable.

Warmup 1. (JBMO 2002) An isosceles triangle $A B C$ satisfies that $C A=C B$. A point P is on the circumcircle between A and B and on the opposite side of the line $A B$ to C. If D is the foot of the perpendicular from C to $P B$, show that $P A+P B=2 \cdot P D$.

Solution: Let the point Q be such that triangles $Q C B$ and $P C A$ are congruent. Since $P A C B$ is cyclic,

$$
\angle C B Q=\angle C A P=180^{\circ}-\angle C B P
$$

which implies that P, B and Q are collinear. Since $Q C B$ and $P C A$ are congruent, $C P Q$ is isosceles and thus D is the midpoint of $P Q$. Therefore

$$
P A+P B=P Q=2 \cdot P D
$$

Warmup 2. (Russia 2005) In an acute-angled triangle $A B C, A M$ and $B N$ are altitudes. A point D is chosen on arc $A C B$ of the circumcircle of the triangle. Let the lines $A M$ and $B D$ meet at P and the lines $B N$ and $A D$ meet at Q. Prove that $M N$ bisects segment $P Q$.

Solution: Assume without the loss of generality that D is on arc $A C$ not including B. Let H be the orthocenter of $A B C$. Since $A D C B$ is cyclic,

$$
\angle P A N=\angle D A C=\angle D B C=\angle Q B M .
$$

Also, it follows that

$$
\angle N A H=90^{\circ}-\angle A C B=\angle M B H
$$

Since $H P \perp A N$ and $H Q \perp B M, P A N$ is similar to $Q B M$ and $N A H$ is similar to $M B H$. Therefore

$$
\frac{P M}{M H}=\frac{P M / B M}{M H / B M}=\frac{Q N / A N}{N H / A N}=\frac{Q N}{N H}
$$

If X denotes the midpoint of $P Q$, then

$$
\frac{P M}{M H} \cdot \frac{N H}{Q N} \cdot \frac{Q X}{X P}=1
$$

and by Menelaus' Theorem applied to triangle $H P Q$, points X, M and N are collinear.

3 Redefining Points to be Easier

Often points in geometry problems are defined in ways that are difficult to deal with. For any points that seem difficult to understand or work with, it is often best to redefine them in a useful way. Specifically, if P is a point in the diagram that is difficult to deal with, it is often best to define P^{\prime} in some other way using a property we think is true of P and which can be used to define P, and then prove that $P^{\prime}=P$. One thing to note is that this method requires that we have a property of P in mind. Finding out what is true of P is usually the most difficult part of problems that can be solved using this method. There is no best way to look for properties of P. However, it is often useful to think about what properties of P would solve or yield significant progress on the problem and what properties seem as though they may be true based on the diagram.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on a circle in the diagram or is concyclic with other points in the diagram, that two lines are parallel or perpendicular, or that two triangles are similar or congruent. It is important though to make sure that you are not only trying to conjecture about the diagram and also trying to make direct progress on the problem. The examples in this section are intended to illustrate how this method of redefining points can be applied to problems.

Example 1. An acute-angled triangle $A B C$ is inscribed in a circle ω. A point P is chosen inside the triangle. Line $A P$ intersects ω at the point A_{1}. Line $B P$ intersects ω at the point B_{1}. A line ℓ is drawn through P and intersects $B C$ and $A C$ at the points A_{2} and B_{2}. Prove that the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$ intersect again on line ℓ.

We want to analyze the second intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. How much we can prove about this intersection Q varies greatly with how we define Q. Consider the two different methods below:

Method $\# 1$: First let's try defining Q directly as the intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. From this, we know that $\angle C Q B_{2}=180^{\circ}-\angle C B_{1} B_{2}$ and $\angle C Q A_{2}=180^{\circ}-\angle C A_{1} A_{2}$. What we want is to show that $\angle C Q B_{2}+\angle C Q A_{2}=180^{\circ}$ which now is equivalent to $\angle C B_{1} B_{2}+\angle C A_{1} A_{2}=180^{\circ}$. However, this is not immediately true given the conditions in the problem. Now consider a second method.

Method \#2: From the diagram, it looks like $B_{1} P Q A_{1}$ is cyclic. From this information, consider defining Q^{\prime} as the intersection of the circumcircle of $B_{1} P A_{1}$ and ℓ. From cyclic quadrilaterals, we have

$$
\angle B_{1} Q^{\prime} P=\angle B_{1} A_{1} P=\angle B_{1} C B_{2}
$$

which implies that Q^{\prime} is on the circumcircle of $B_{1} B_{2} C$. By a similar argument, we have that Q^{\prime} is on the circumcircle of $A_{1} A_{2} C$. Together these imply that $Q=Q^{\prime}$. Thus Q lies on ℓ.

A solution can also be obtained by defining Q^{\prime} as the intersection of the circumcircle of $B_{1} B_{2} C$ and ℓ. The way we define Q^{\prime} above can be motivated by more than a conjecture based off of a conjecture from a diagram. We want to define Q^{\prime} in some way and then use this way to show it lies on circles. The cleanest way to do this is to show the angle conditions for a cyclic quadrilateral. In order to get these angle conditions, one promising approach is to define Q^{\prime} as the intersection of a circle with something, which in this case is ℓ.

One note for completeness is that the condition $\angle C B_{1} B_{2}+\angle C A_{1} A_{2}=180^{\circ}$ in Method \#1 is a direct implication of Pascal's Theorem. In this case, Method \#2 has saved us having to cite a deep theorem such as Pascal's Theorem. In other cases, redefining points can avoid much more complicated applications of advanced theorems.

These next examples illustrate this same method applied in more situations. Particularly in Example 3, it is hard to find a clean solution without the observations used to define P^{\prime}.

Example 2. (China 2012) In the triangle $A B C, \angle A$ is biggest. On the circumcircle of $A B C$, let D be the midpoint of arc $A B C$ and E be the midpoint of arc $A C B$. The circle c_{1} passes through A, B and is tangent to $A C$ at A, the circle c_{2} passes through A, E and is tangent $A D$ at A. Circles c_{1} and c_{2} intersect at A and P. Prove that $A P$ bisects $\angle B A C$.

If the result is true, then by the tangency conditions $\angle A P B=180^{\circ}-\angle B A C$ and $\angle P B A=$ $180^{\circ}-\angle A P B-\angle P A B=\frac{1}{2} \angle B A C=\angle P A B$. Therefore if the problem is true, then P lies on the perpendicular bisector of $A B$. This gives us the hint to try defining P based on this. The method below defines P^{\prime} as the intersection of c_{1} and the perpendicular bisector of $A B$.

Solution: Let the center of c_{1} be O_{1} and let the center of c_{2} be O_{2}. Since c_{1} is tangent to $A C$, it follows that $\angle B O_{1} A=2 \angle B A C$. Since O_{1} and E both lie on the perpendicular bisector of $A B$, it follows that $O_{1} E$ bisects angle $\angle B O_{1} A$ which implies that $\angle B O_{1} A=\angle B A C$ and hence that $\angle B P^{\prime} E=90^{\circ}+\frac{1}{2} \angle B A C$. However, since P^{\prime} lies on the perpencular bisector $E O_{1}$ of $A B, A$ is the reflection of B about $E O_{1}$ and $\angle A P^{\prime} E=\angle B P^{\prime} E=90^{\circ}+\angle B A C$. Since c_{2}
is tangent to $A D$ and passes through E, it follows that $\angle A O_{2} E=2 \angle D A E=180^{\circ}-\angle B A C$. Combining this with the angle relation above yields that P^{\prime} lies on c_{2}. Hence P^{\prime} lies on both c_{1} and c_{2} and $P=P^{\prime}$. Therefore $\angle B A P=\frac{1}{2} \angle B O_{1} P=\frac{1}{2} \angle B A C$ which implies the result.

Example 3. (IMO 2011) Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C$, $C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

Experimenting with what we can prove yields that we can get almost no information that seems to lead to proving the desired result through standard techniques. The main issue is that we know almost nothing about the point of tangency if the problem is true. The key to the simplest solution to this problem is to find a way to define this supposed point of tangency. We try intersecting circumcircles in order to obtain angle information to prove that the point of intersection lies on Γ, the circumcircle of the triangle determined by the three lines and prove that the circles are tangent at this point.

Solution Outline: Let A^{\prime}, B^{\prime} and C^{\prime} be the intersections of ℓ_{b} and ℓ_{c}, ℓ_{a} and ℓ_{c}, and ℓ_{a} and ℓ_{b}, respectively. Let P be the point of tangency between Γ and ℓ and let Q be the reflection of P through $B C$. Now let T be the second intersection of the circumcircles of $B B^{\prime} Q$ and $C C^{\prime} Q$. It can be shown that T lies on Γ and the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ by angle chasing. Similarly, T can be shown to be a point of tangency between the circles by angle chasing. The angle chasing is made easier by first showing that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ meet at the incenter I of $A^{\prime} B^{\prime} C^{\prime}$.

Example 4. (CMO 2013) Let O denote the circumcenter of an acute-angled triangle $A B C$. Let point P on side $A B$ be such that $\angle B O P=\angle A B C$, and let point Q on side $A C$ be such that $\angle C O Q=\angle A C B$. Prove that the reflection of $B C$ in the line $P Q$ is tangent to the circumcircle of triangle $A P Q$.

Here, we use the method above to define the reflection R of the point of tangency in line $P Q$ as the intersection of triangle $O B P$ with side $B C$. This construction can be motivated either by noticing this pattern in the diagram, noting that this method of intersecting circles obtains angles in exactly the way needed to prove the result, or by trying to complete the Miquel configuration. The Miquel configuration is described in greater detail in Section 5.

Solution: Let the circumcircle of triangle $O B P$ intersect side $B C$ at the points R and B and let $\angle A, \angle B$ and $\angle C$ denote the angles at vertices A, B and C, respectively. Now note that since $\angle B O P=\angle B$ and $\angle C O Q=\angle C$, it follows that

$$
\angle P O Q=360^{\circ}-\angle B O P-\angle C O Q-\angle B O C=360^{\circ}-(180-\angle A)-2 \angle A=180^{\circ}-\angle A
$$

This implies that $A P O Q$ is a cyclic quadrilateral. Since $B P O R$ is cyclic,

$$
\angle Q O R=360^{\circ}-\angle P O Q-\angle P O R=360^{\circ}-\left(180^{\circ}-\angle A\right)-\left(180^{\circ}-\angle B\right)=180^{\circ}-\angle C .
$$

This implies that $C Q O R$ is a cyclic quadrilateral. Since $A P O Q$ and $B P O R$ are cyclic,

$$
\angle Q P R=\angle Q P O+\angle O P R=\angle O A Q+\angle O B R=\left(90^{\circ}-\angle B\right)+\left(90^{\circ}-\angle A\right)=\angle C
$$

Since $C Q O R$ is cyclic, $\angle Q R C=\angle C O Q=\angle C=\angle Q P R$ which implies that the circumcircle of triangle $P Q R$ is tangent to $B C$. Further, since $\angle P R B=\angle B O P=\angle B$,

$$
\angle P R Q=180^{\circ}-\angle P R B-\angle Q R C=180^{\circ}-\angle B-\angle C=\angle A=\angle P A Q
$$

This implies that the circumcircle of $P Q R$ is the reflection of Γ in line $P Q$. By symmetry in line $P Q$, this implies that the reflection of $B C$ in line $P Q$ is tangent to Γ.

4 Spiral Similarity and Applying Transformations

One of the most useful techniques in synthetic geometry problems is applying transformations to a diagram. Often solutions to difficult problems introduce a point to the diagram which allows for a clean quick solution. These points can often be viewed as completions of transformations already present in a diagram. For example, a diagram may contain a parallelogram $A B C D$ in which cases there is a translation mapping $A B$ to $D C$. A diagram may contain a trapezoid $A B C D$ with $A B \| C D$ in which case there is a homothety mapping $A B$ to $C D$. The transformations that most commonly appear are spiral similarities, rotations, homotheties and translations. The first few examples illustrate different ways to apply spiral similarities. The first example is one direction of Ptolemy's Theorem.

Example 5. (Ptolemy) If $A B C D$ is a cyclic quadrilateral, then

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

Here we construct similar triangles by applying a spiral similarity with center A mapping the C to D. We let the point B be mapped to P under this transformation.

Solution: Let P be the point on $B D$ such that $\angle A P D=\angle A B C$. Note that since $\angle A D P=$ $\angle A C B$ which implies that triangles $A B C$ and $A P D$ are similar. This implies that triangles $A D C$ and $A P B$ are similar. Therefore $\frac{A D}{A C}=\frac{P D}{B C}$ and $\frac{A B}{A C}=\frac{B P}{C D}$. Therefore

$$
B D=B P+P D=\frac{A B \cdot C D}{A C}+\frac{A D \cdot B C}{A C}
$$

which implies on multiplying up that $A B \cdot C D+A D \cdot B C=A C \cdot B D$.
Example 6. (IMO Shortlist 2000) Let $A B C D$ be a convex quadrilateral. The perpendicular bisectors of its sides $A B$ and $C D$ meet at Y. Denote by X a point inside the quadrilateral
$A B C D$ such that $\measuredangle A D X=\measuredangle B C X<90^{\circ}$ and $\measuredangle D A X=\measuredangle C B X<90^{\circ}$. Show that $\measuredangle A Y B=2 \cdot \measuredangle A D X$.

In this example we consider the spiral similarity with center B mapping line $C X$ to the perpendicular bisector of $A B$ in order to obtain the angle we want Y to have at the image Y^{\prime} of C. We then show that $Y=Y^{\prime}$ in the same way as in the previous section.

Solution: Let X^{\prime} and Y^{\prime} be such that $A X^{\prime}=B X^{\prime}, A Y^{\prime}=B Y^{\prime}, \measuredangle A X^{\prime} B=2 \cdot \measuredangle B X C$ and $\measuredangle A Y^{\prime} B=2 \cdot \measuredangle B C X$. We have that $A X^{\prime} Y^{\prime}$ and $A X D$ are similar, and that $B X^{\prime} Y^{\prime}$ and $B X C$ are similar. These similarities imply that triangles $A X X^{\prime}$ and $A D Y^{\prime}$ are similar and that triangles $B X X^{\prime}$ and $B C Y^{\prime}$ are similar. The ratios of similarity give that

$$
D Y^{\prime}=\frac{A Y^{\prime} \cdot X X^{\prime}}{A X^{\prime}}=\frac{B Y^{\prime} \cdot X X^{\prime}}{B X^{\prime}}=C Y^{\prime}
$$

Thus Y^{\prime} lies on the perpendicular bisector of $C D$ and $Y^{\prime}=Y$. Therefore $\measuredangle A Y B=2 \cdot \measuredangle A D X$.
Example 7. (IMO 1996) Let P be a point inside a triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C .
$$

Let D, E be the incenters of triangles $A P B, A P C$, respectively. Show that the lines $A P$, $B D, C E$ meet at a point.

Solution: Here we use spiral similarity to construct exactly the given angle condition. By the angle bisector theorem, it suffices to show that $\frac{A B}{B P}=\frac{A C}{C P}$. Let Q be such that triangles $A P B$ and $A C Q$ are similar. It follows that $A P C$ and $A B Q$ are similar. It follows that

$$
\angle C B Q=\angle A P C-\angle A B C=\angle A P B-\angle A C B=\angle B C Q
$$

and thus $B Q=C Q$. Ratios of similarity finish the problem since

$$
\frac{A B}{B P}=\frac{A Q}{C Q}=\frac{A Q}{B Q}=\frac{A C}{C P}
$$

The next problem illustrates an often useful transformation when there is a midpoint of the side of a triangle. It is often useful to perform a 180° rotation about the midpoint to produce a parallelogram as in the example below which is from Challenging Problems in Geometry.

Example 8. Let $A B C$ be a given triangle and M be the midpoint of $B C$. If $\angle C A M=$ $2 \cdot \angle B A M$ and D is a point on line $A M$ such that $\angle D B A=90^{\circ}$, prove that $A D=2 \cdot A C$.

Solution: There is a very short trigonometric solution to this problem, but we present a synthetic one to illustrate the transformation mentioned above. Let D be such that $A B D C$ is a parallelogram. If N is the midpoint of $A D$, then M is the midpoint of $A D$. Now note

$$
\angle B N D=2 \cdot \angle B A M=\angle C A M=\angle N D B
$$

and thus $B D=B N$. This implies that $A C=B D=B N=\frac{1}{2} A D$.
The next example illustrates applying translations, which are particularly useful when there is a parallelogram in the diagram.

Example 9. (2013 British MO) The point P lies inside triangle $A B C$ so that $\angle A B P=$ $\angle P C A$. The point Q is such that $P B Q C$ is a parallelogram. Prove that $\angle Q A B=\angle C A P$.

Solution: Let R be such that $R A C P$ is a parallelogram. It follows that $\angle A R P=\angle P C A=$ $\angle A B P$ which implies that $R A P B$ is cyclic. It follows that $B R P$ and $Q A C$ are congruent and thus $\angle Q A C=\angle B R P=\angle B A P$. This implies that $\angle Q A B=\angle C A P$.

5 Geometry Facts

The theorems and facts below are many that I find useful. This list is a work in progress so there are many useful ideas that I have omitted. I plan to add sections on collinearity, concurrency, and miscellaneous useful facts. If any come to mind, please let me know. For now, I have not included ideas from inversive and projective geometry. The theorems below all apply to points in a plane. Quadrilaterals are named $A B C D$ such that the sides of the quadrilateral are $A B, B C, C D$ and $D A$. The directed angle $\measuredangle A B C$ is the counter-clockwise angle between 0 and 180° needed to rotate line $A B$ to line $B C$. A triangle $A B C$ is taken to have angles a, b and c.

Cyclic Quadrilaterals:

1. A convex quadrilateral $A B C D$ is cyclic if and only if either:
(a) $\angle A D B=\angle A C B$
(b) $\angle D A B+\angle B C D=180^{\circ}$
2. The above two conditions can be restated as a single condition in terms of directed angles: Four points A, B, C and D are concyclic if and only if $\measuredangle A B C=\measuredangle A D C$.
3. (Power of a Point) Let $A B C D$ be a convex quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at $Q . A B C D$ is cyclic if and only if either:
(a) $A Q \cdot Q C=B Q \cdot Q D$ or equivalently $Q A D$ and $Q B C$ are similar
(b) $P A \cdot P B=P C \cdot P D$ or equivalently $P A D$ and $P C B$ are similar
4. Given a triangle $A B C$, the intersections of the internal and external bisectors of angle $\angle B A C$ with the perpendicular bisector of $B C$ both lie on the circumcircle of $A B C$.
5. (Ptolemy's Theorem) A quadrilateral $A B C D$ is cyclic if and only if

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

6. Let $A B C D$ be a cyclic quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. Then:

$$
\frac{B Q}{Q D}=\frac{A B \cdot B C}{A D \cdot D C} \quad \text { and } \quad \frac{P B}{P A}=\frac{B C \cdot B D}{A C \cdot A D}
$$

7. (Polars) Let $A B C D$ be a cyclic quadrilateral inscribed in circle Γ such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. If the tangents drawn from P to Γ touch Γ at R and S, then R, Q and S are collinear.

Circles:

1. (Power of a Point) Given a circle Γ with center O and a point P then for any line ℓ through P that intersects Γ at A and B, the value $P A \cdot P B$ is constant as ℓ varies and is equal to the power of the point P with respect to Γ.
(a) The power of P is equal to $r^{2}-P O^{2}$ if P is inside Γ and $P O^{2}-r^{2}$ otherwise.
(b) If $P A$ is tangent to Γ, then the power of P is equal to $P A^{2}$.
2. (Radical Axis) Given two circles Γ_{1} and Γ_{2}, the set of all points P with equal powers with respect to Γ_{1} and Γ_{2} is a line which is the radical axis of the two circles.
(a) The radical axis is perpendicular to the line through the centers of Γ_{1} and Γ_{2}.
(b) If Γ_{1} and Γ_{2} intersect at A and B, then the radical axis passes through A and B.
(c) If $A B$ is a common tangent with A on Γ_{1} and B on Γ_{2}, then the radical axis passes through the midpoint of $A B$.
3. (Radical Center) Given three circles Γ_{1}, Γ_{2} and Γ_{3}, the three radical axes between pairs of the three circles meet at a common point P which is the radical center of the circles.
4. A point P is a circle of radius zero and the radical axis of P and a circle Γ is the line through the midpoints of $P A$ and $P B$ where A and B are points on Γ such that $P A$ and $P B$ are tangent to Γ.
5. (Monge's Theorem) Given three circles Γ_{1}, Γ_{2} and Γ_{3}. If P, Q and R are the external centers of homothety between pairs of the three circles, then P, Q and R are collinear. If P and Q are internal centers of homothety, then P, Q and R are also collinear.
6. Two circles Γ_{1} and Γ_{2} intersect at R and have centers O_{1} and O_{2}. If P and Q are the internal and external centers of homothety between the two circles, then $\angle P R Q=90^{\circ}$. The lines $R P$ and $R Q$ are the internal and external bisectors of $\angle O_{1} R O_{2}$.

Triangle Geometry:

1. (Angle Bisector Theorem) Let $A B C$ be a given triangle and let P and Q be the intersections of the internal and external bisectors of angle $\angle A B C$ with line $A C$. Then

$$
\frac{A B}{B C}=\frac{A P}{P C}=\frac{A Q}{Q C}
$$

2. Angles around the centers of a triangle $A B C$:
(a) If I is the incenter of $A B C$ then $\angle B I C=90^{\circ}+\frac{a}{2}, \angle I B C=\frac{b}{2}$ and $\angle I C B=\frac{c}{2}$.
(b) If H is the orthocenter of $A B C$ then $\angle B H C=180^{\circ}-a, \angle H B C=90^{\circ}-c$ and $\angle H C B=90^{\circ}-b$.
(c) If O is the circumcenter of $A B C$ then $\angle B O C=2 a$ and $\angle O B C=\angle O C B=$ $90^{\circ}-a$.
(d) If I_{a} is the A-excenter of $A B C$ then $\angle A I_{a} B=\frac{c}{2}, \angle A I_{a} C=\frac{b}{2}$ and $\angle B I_{a} C=$ $90^{\circ}-\frac{a}{2}$.
3. Pedal triangles of the centers of a triangle $A B C$:
(a) If $D E F$ is the triangle formed by projecting the incenter I onto sides $B C, A C$ and $A B$, then I is the circumcenter of $D E F$ and $\angle E D F=90^{\circ}-\frac{a}{2}$.
(b) If $D E F$ is the triangle formed by projecting the orthocenter H onto sides $B C$, $A C$ and $A B$, then H is the incenter of $D E F$ and $\angle E D F=180^{\circ}-2 a$.
(c) The medial triangle of $A B C$ is the pedal triangle of the circumcenter O of $A B C$ and O is its orthocenter.
4. Alternate methods of defining the orthocenter and circumcenter:
(a) O is the circumcenter of $A B C$ if and only if $\measuredangle A O B=2 \measuredangle A C B$ and $O A=O B$.
(b) H is the orthocenter of $A B C$ if and only if H lies on the altitude from A and satisfies that $\measuredangle B H C=180^{\circ}-\measuredangle B A C$.
5. Facts related to the orthocenter H of a triangle $A B C$ with circumcircle Γ :
(a) If O is the circumcenter of $A B C$, then $\angle B A H=\angle C A O$.
(b) If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$.
(c) If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the pedal triangle of H to $D E F$ with ratio 2.
(d) If D and E are the intersections of $A H$ with $B C$ and Γ, respectively, then D is the midpoint of $H E$.
(e) H lies on the three circles formed by reflecting Γ about $A B, B C$ and $A C$.
(f) If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
(g) If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
6. Facts related to the incenter I and excenters I_{a}, I_{b}, I_{c} of $A B C$ with circumcircle Γ :
(a) If the incircle of $A B C$ is tangent to $A B$ and $A C$ at points D and E and s is the semiperimeter of $A B C$ then

$$
A D=A E=\frac{A B+A C-B C}{2}=s-B C
$$

(b) If $A I$ intersects Γ at D then $D B=D I=D C, D$ is the midpoint of $I I_{a}$, and $I I_{a}$ is a diameter of the circle with center D which passes through B and C.
(c) If $A I, B I$ and $C I$ intersect Γ at D, E and F, then $I_{a} I_{b} I_{c}, D E F$ and the pedal triangle of I are similar and have parallel sides.
(d) I is the orthocenter of $I_{a} I_{b} I_{c}$ and Γ is the nine-point circle of $I_{a} I_{b} I_{c}$.
(e) If $B I$ and $C I$ intersect Γ again at D and E, then I is the reflection of A in line $D E$ and if M is the intersection of the external bisector of $\angle B A C$ with Γ, then $D M E I$ is a parallelogram.
(f) If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
(g) If the A-excircle of $A B C$ is tangent to $A B, A C$ and $B C$ at D, E and F then $A B+B F=A C+C F=A D=A E=s$ where s is the semi-perimeter of $A B C$.
(h) If M is the midpoint of $\operatorname{arc} B A C$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
7. (Nine-Point Circle) Given a triangle $A B C$, let Γ denote the circle passing through the midpoints of the sides of $A B C$. If H is the orthocenter of $A B C$, then Γ passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
9. (Symmedian) Given a triangle $A B C$ such that M is the midpoint of $B C$, the symmedian from A is the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.
(a) If the tangents to the circumcircle Γ of $A B C$ at B and C intersect at N, then N lies on the symmedian from A and $\angle B A M=\angle C A N$.
(b) If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
10. If the median from A in a triangle $A B C$ intersects the circumcircle Γ of $A B C$ at D, then $A B \cdot B D=A C \cdot C D$.
11. (Euler's Formula) Let O, I and I_{a} be the circumcenter, incenter and A-excenter of a triangle $A B C$ with circumradius R, inradius r and A-exradius r_{a}. Then:
(a) $O I=\sqrt{R(R-2 r)}$.
(b) $O I_{a}=\sqrt{R\left(R-2 r_{a}\right)}$.
12. (Poncelet's Porism) Let Γ and ω be two circles with centers O and I and radii R and r, respectively, such that $O I=\sqrt{R(R-2 r)}$. Let A, B and C be any three points on Γ such that lines $A B$ and $A C$ are tangent to ω. Then line $B C$ is also tangent to ω.
13. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.

Trigonometry:

1. (Sine Law) Given a triangle $A B C$ with circumradius R

$$
\frac{B C}{\sin \angle A}=\frac{A C}{\sin \angle B}=\frac{A B}{\sin \angle C}=2 R
$$

2. (Cosine Law) Given a triangle $A B C$

$$
B C^{2}=A B^{2}+A C^{2}-2 \cdot A B \cdot A C \cdot \cos \angle A
$$

3. (Pythagorean Theorem) If $A B C$ is a triangle, then $\angle A B C=90^{\circ}$ if and only if

$$
A B^{2}+B C^{2}=A C^{2}
$$

4. Given a triangle $A B C$ and a point D on line $B C$, then

$$
\frac{\sin \angle B A D}{\sin \angle C A D}=\frac{B D \cdot A C}{C D \cdot A B}
$$

Miscellaneous Synthetic Facts:

1. (Spiral Similarity) Let $O A B$ and $O C D$ be directly similar triangles. Then $O A C$ and $O B D$ are also directly similar triangles.
2. The unique center of spiral similarity sending $A B$ to $C D$ is the second intersection of the circumcircles of $Q A B$ and $Q C D$ where $A C$ and $B D$ intersect at Q.
3. Lines $A B$ and $C D$ are perpendicular if and only if $A C^{2}-A D^{2}=B C^{2}-B D^{2}$.
4. (Apollonius Circle) Given two points A and B and a fixed $r>0$, then the locus of points Q such that $A Q / B Q=r$ is a circle Γ with center at the midpoint of $Q_{1} Q_{2}$ where Q_{1} and Q_{2} are the two points on line $A B$ satisfying $A Q_{i} / B Q_{i}=r$ for $i=1,2$.
5. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.

6 Problems

The problems below have been arranged roughly in order of difficulty. I divided the problems into three difficulty classes: A, B and C.

A1. (CMO 1997) The point O is situated inside the parallelogram $A B C D$ such that $\angle A O B+\angle C O D=180^{\circ}$. Prove that $\angle O B C=\angle O D C$.

A2. (APMO 2007) Let $A B C$ be an acute angled triangle with $\angle B A C=60^{\circ}$ and $A B>$ $A C$. Let I be the incenter, and H the orthocenter of the triangle $A B C$. Prove that $2 \angle A H I=3 \angle A B C$.

A3. (IMO 2006) Let $A B C$ be triangle with incenter I. A point P in the interior of the triangle satisfies $\angle P B A+\angle P C A=\angle P B C+\angle P C B$. Show that $A P \geq A I$, and that equality holds if and only if $P=I$.

A4. (IMO 2008) Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $B C$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}. Prove that six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$ and C_{2} are concyclic.

A5. (Russia 2012) The points A_{1}, B_{1} and C_{1} lie on the sides $B C, C A$ and $A B$ of the triangle $A B C$, respectively. Suppose that $A B_{1}-A C_{1}=C A_{1}-C B_{1}=B C_{1}-B A_{1}$. Let O_{A}, O_{B} and O_{C} be the circumcenters of triangles $A B_{1} C_{1}, A_{1} B C_{1}$ and $A_{1} B_{1} C$ respectively. Prove that the incenter of triangle $O_{A} O_{B} O_{C}$ is the incenter of triangle $A B C$.

A6. (IMO Shortlist 2006) Let $A B C$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $\frac{A K}{K B}=\frac{D L}{L C}$. Suppose that there are points P and Q on the line segment $K L$ satisfying $\angle A P B=\angle B C D$ and $\angle C Q D=\angle A B C$. Prove that the points P, Q, B and C are concyclic.

A7. (IMO Shortlist 2008) Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

B1. (IMO Shortlist 2000) Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that $O D+D H=O E+E H=O F+F H$ and the lines $A D, B E$, and $C F$ are concurrent.

B2. (IMO Shortlist 2012) In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

B3. (IMO Shortlist 2005) Let $A B C D$ be a parallelogram. A variable line g through the vertex A intersects the rays $B C$ and $D C$ at the points X and Y, respectively. Let K and L be the A-excenters of the triangles $A B X$ and $A D Y$. Show that the angle $\measuredangle K C L$ is independent of the line g.

B4. (Tuymaada MO 2012) Point P is taken in the interior of the triangle $A B C$, so that

$$
\angle P A B=\angle P C B=\frac{1}{4}(\angle A+\angle C) .
$$

Let L be the foot of the angle bisector of $\angle B$. The line $P L$ meets the circumcircle of $\triangle A P C$ at point Q. Prove that $Q B$ is the angle bisector of $\angle A Q C$.

B5. (Japan MO 2009) Let Γ be the circumcircle of a triangle $A B C$. A circle with center O touches to line segment $B C$ at P and touches the arc $B C$ of Γ which doesn't have A at Q. If $\angle B A O=\angle C A O$, then prove that $\angle P A O=\angle Q A O$.

B6. (Bulgarian TST 2004) The points P and Q lie on the diagonals $A C$ and $B D$, respectively, of a quadrilateral $A B C D$ such that $\frac{A P}{A C}+\frac{B Q}{B D}=1$. The line $P Q$ meets the sides $A D$ and $B C$ at points M and N. Prove that the circumcircles of the triangles $A M P$, $B N Q, D M Q$, and $C N P$ are concurrent.

B7. (Chinese TST 2002) Circles ω_{1} and ω_{2} intersect at points A and B. Points C and D are on circles ω_{1} and ω_{2}, respectively, such that lines $A C$ and $A D$ are tangent to circles ω_{2} and ω_{1}, respectively. Let I_{1} and I_{2} be the incenters of triangles $A B C$ and $A B D$, respectively. Segments $I_{1} I_{2}$ and $A B$ intersect at E. Prove that $\frac{1}{A E}=\frac{1}{A C}+\frac{1}{A D}$.

C1. (Russia 2012) The point E is the midpoint of the segment connecting the orthocenter of the scalene triangle $A B C$ and the point A. The incircle of triangle $A B C$ incircle is tangent to $A B$ and $A C$ at points C^{\prime} and B^{\prime}, respectively. Prove that point F, the point symmetric to point E with respect to line $B^{\prime} C^{\prime}$, lies on the line that passes through both the circumcenter and the incenter of triangle $A B C$.

C2. (Chinese TST 2005) Let ω be the circumcircle of $\triangle A B C . P$ is an interior point of $\triangle A B C . A_{1}, B_{1}, C_{1}$ are the intersections of $A P, B P, C P$ respectively and A_{2}, B_{2}, C_{2} are the symmetrical points of A_{1}, B_{1}, C_{1} with respect to the midpoints of side $B C, C A, A B$. Show that the circumcircle of $\triangle A_{2} B_{2} C_{2}$ passes through the orthocentre of $\triangle A B C$.

C3. (USA TST 2005) Let $A B C$ be an acute scalene triangle with O as its circumcenter. Point P lies inside triangle $A B C$ with $\angle P A B=\angle P B C$ and $\angle P A C=\angle P C B$. Point Q lies on line $B C$ with $Q A=Q P$. Prove that $\angle A Q P=2 \angle O Q B$.

C4. (USA TST 2006) Let $A B C$ be a triangle. Triangles $P A B$ and $Q A C$ are constructed outside of triangle $A B C$ such that $A P=A B$ and $A Q=A C$ and $\angle B A P=\angle C A Q$. Segments $B Q$ and $C P$ meet at R. Let O be the circumcenter of triangle $B C R$. Prove that $A O \perp P Q$.

C5. (RMM 2012) Let $A B C$ be a triangle and let I and O denote its incentre and circumcentre respectively. Let ω_{A} be the circle through B and C which is tangent to the incircle of the triangle $A B C$; the circles ω_{B} and ω_{C} are defined similarly. The circles ω_{B} and ω_{C} meet at a point A^{\prime} distinct from A; the points B^{\prime} and C^{\prime} are defined similarly. Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent at a point on the line $I O$.

C6. (RMM 2011) A triangle $A B C$ is inscribed in a circle ω. A variable line ℓ chosen parallel to $B C$ meets segments $A B, A C$ at points D, E respectively, and meets ω at points K, L (where D lies between K and E). Circle γ_{1} is tangent to the segments $K D$ and $B D$ and also tangent to ω, while circle γ_{2} is tangent to the segments $L E$ and $C E$ and also tangent to ω. Determine the locus, as ℓ varies, of the meeting point of the common inner tangents to γ_{1} and γ_{2}.

