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Synthetic Geometry
Matthew Brennan

1 Introduction

This handout includes a rough outline of the solutions presented in the talk and a list of some
common theorems and results useful in many geometry problems. Many of the theorems
and lemmas listed have interesting proofs and it is recommended that you try to prove some
of them. The solutions to the examples are outlines which are intended to illustrate certain
techniques. In some cases, calculations and dealing with special diagram cases are omitted.

2 Warmup

Here are two problems to start, both of which have short clean solutions. The first warmup
applies a transformation after which the result becomes much clearer. The solution to the
second warmup shifts the focus to a new triangle after which the problem becomes tractable.

Warmup 1. (JBMO 2002) An isosceles triangle ABC satisfies that CA = CB. A point P
is on the circumcircle between A and B and on the opposite side of the line AB to C. If D
is the foot of the perpendicular from C to PB, show that PA+ PB = 2 · PD.

Solution: Let the point Q be such that triangles QCB and PCA are congruent. Since
PACB is cyclic,

∠CBQ = ∠CAP = 180◦ − ∠CBP

which implies that P , B and Q are collinear. Since QCB and PCA are congruent, CPQ is
isosceles and thus D is the midpoint of PQ. Therefore

PA+ PB = PQ = 2 · PD

Warmup 2. (Russia 2005) In an acute-angled triangle ABC, AM and BN are altitudes.
A point D is chosen on arc ACB of the circumcircle of the triangle. Let the lines AM and
BD meet at P and the lines BN and AD meet at Q. Prove that MN bisects segment PQ.

Solution: Assume without the loss of generality that D is on arc AC not including B. Let
H be the orthocenter of ABC. Since ADCB is cyclic,

∠PAN = ∠DAC = ∠DBC = ∠QBM.
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Also, it follows that
∠NAH = 90◦ − ∠ACB = ∠MBH.

Since HP ⊥ AN and HQ ⊥ BM , PAN is similar to QBM and NAH is similar to MBH.
Therefore

PM

MH
=
PM/BM

MH/BM
=
QN/AN

NH/AN
=
QN

NH

If X denotes the midpoint of PQ, then

PM

MH
· NH
QN

· QX
XP

= 1

and by Menelaus’ Theorem applied to triangle HPQ, points X, M and N are collinear.

3 Redefining Points to be Easier

Often points in geometry problems are defined in ways that are difficult to deal with. For
any points that seem difficult to understand or work with, it is often best to redefine them
in a useful way. Specifically, if P is a point in the diagram that is difficult to deal with, it is
often best to define P ′ in some other way using a property we think is true of P and which
can be used to define P , and then prove that P ′ = P . One thing to note is that this method
requires that we have a property of P in mind. Finding out what is true of P is usually the
most difficult part of problems that can be solved using this method. There is no best way
to look for properties of P . However, it is often useful to think about what properties of P
would solve or yield significant progress on the problem and what properties seem as though
they may be true based on the diagram.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on
a circle in the diagram or is concyclic with other points in the diagram, that two lines are
parallel or perpendicular, or that two triangles are similar or congruent. It is important
though to make sure that you are not only trying to conjecture about the diagram and also
trying to make direct progress on the problem. The examples in this section are intended to
illustrate how this method of redefining points can be applied to problems.

Example 1. An acute-angled triangle ABC is inscribed in a circle ω. A point P is chosen
inside the triangle. Line AP intersects ω at the point A1. Line BP intersects ω at the point
B1. A line ` is drawn through P and intersects BC and AC at the points A2 and B2. Prove
that the circumcircles of triangles A1A2C and B1B2C intersect again on line `.

We want to analyze the second intersection of the circumcircles of triangles A1A2C and
B1B2C. How much we can prove about this intersection Q varies greatly with how we define
Q. Consider the two different methods below:
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Method #1: First let’s try defining Q directly as the intersection of the circumcircles of
triangles A1A2C and B1B2C. From this, we know that ∠CQB2 = 180◦ − ∠CB1B2 and
∠CQA2 = 180◦−∠CA1A2. What we want is to show that ∠CQB2 +∠CQA2 = 180◦ which
now is equivalent to ∠CB1B2 + ∠CA1A2 = 180◦. However, this is not immediately true
given the conditions in the problem. Now consider a second method.

Method #2: From the diagram, it looks like B1PQA1 is cyclic. From this information,
consider defining Q′ as the intersection of the circumcircle of B1PA1 and `. From cyclic
quadrilaterals, we have

∠B1Q
′P = ∠B1A1P = ∠B1CB2

which implies that Q′ is on the circumcircle of B1B2C. By a similar argument, we have that
Q′ is on the circumcircle of A1A2C. Together these imply that Q = Q′. Thus Q lies on `.

A solution can also be obtained by defining Q′ as the intersection of the circumcircle of
B1B2C and `. The way we define Q′ above can be motivated by more than a conjecture
based off of a conjecture from a diagram. We want to define Q′ in some way and then use
this way to show it lies on circles. The cleanest way to do this is to show the angle conditions
for a cyclic quadrilateral. In order to get these angle conditions, one promising approach is
to define Q′ as the intersection of a circle with something, which in this case is `.

One note for completeness is that the condition ∠CB1B2 + ∠CA1A2 = 180◦ in Method #1
is a direct implication of Pascal’s Theorem. In this case, Method #2 has saved us having to
cite a deep theorem such as Pascal’s Theorem. In other cases, redefining points can avoid
much more complicated applications of advanced theorems.

These next examples illustrate this same method applied in more situations. Particularly in
Example 3, it is hard to find a clean solution without the observations used to define P ′.

Example 2. (China 2012) In the triangle ABC, ∠A is biggest. On the circumcircle of
ABC, let D be the midpoint of arc ABC and E be the midpoint of arc ACB. The circle
c1 passes through A,B and is tangent to AC at A, the circle c2 passes through A,E and is
tangent AD at A. Circles c1 and c2 intersect at A and P . Prove that AP bisects ∠BAC.

If the result is true, then by the tangency conditions ∠APB = 180◦−∠BAC and ∠PBA =
180◦ − ∠APB − ∠PAB = 1

2
∠BAC = ∠PAB. Therefore if the problem is true, then P lies

on the perpendicular bisector of AB. This gives us the hint to try defining P based on this.
The method below defines P ′ as the intersection of c1 and the perpendicular bisector of AB.

Solution: Let the center of c1 be O1 and let the center of c2 be O2. Since c1 is tangent to AC,
it follows that ∠BO1A = 2∠BAC. Since O1 and E both lie on the perpendicular bisector
of AB, it follows that O1E bisects angle ∠BO1A which implies that ∠BO1A = ∠BAC and
hence that ∠BP ′E = 90◦+ 1

2
∠BAC. However, since P ′ lies on the perpencular bisector EO1

of AB, A is the reflection of B about EO1 and ∠AP ′E = ∠BP ′E = 90◦ + ∠BAC. Since c2

3



2014 Winter Camp Synthetic Geometry Matthew Brennan

is tangent to AD and passes through E, it follows that ∠AO2E = 2∠DAE = 180◦−∠BAC.
Combining this with the angle relation above yields that P ′ lies on c2. Hence P ′ lies on both
c1 and c2 and P = P ′. Therefore ∠BAP = 1

2
∠BO1P = 1

2
∠BAC which implies the result.

Example 3. (IMO 2011) Let ABC be an acute triangle with circumcircle Γ. Let ` be a
tangent line to Γ, and let `a, `b and `c be the lines obtained by reflecting ` in the lines BC,
CA and AB, respectively. Show that the circumcircle of the triangle determined by the lines
`a, `b and `c is tangent to the circle Γ.

Experimenting with what we can prove yields that we can get almost no information that
seems to lead to proving the desired result through standard techniques. The main issue is
that we know almost nothing about the point of tangency if the problem is true. The key
to the simplest solution to this problem is to find a way to define this supposed point of
tangency. We try intersecting circumcircles in order to obtain angle information to prove
that the point of intersection lies on Γ, the circumcircle of the triangle determined by the
three lines and prove that the circles are tangent at this point.

Solution Outline: Let A′, B′ and C ′ be the intersections of `b and `c, `a and `c, and `a
and `b, respectively. Let P be the point of tangency between Γ and ` and let Q be the
reflection of P through BC. Now let T be the second intersection of the circumcircles of
BB′Q and CC ′Q. It can be shown that T lies on Γ and the circumcircle of A′B′C ′ by angle
chasing. Similarly, T can be shown to be a point of tangency between the circles by angle
chasing. The angle chasing is made easier by first showing that AA′, BB′ and CC ′ meet at
the incenter I of A′B′C ′.

Example 4. (CMO 2013) Let O denote the circumcenter of an acute-angled triangle ABC.
Let point P on side AB be such that ∠BOP = ∠ABC, and let point Q on side AC be such
that ∠COQ = ∠ACB. Prove that the reflection of BC in the line PQ is tangent to the
circumcircle of triangle APQ.

Here, we use the method above to define the reflection R of the point of tangency in line
PQ as the intersection of triangle OBP with side BC. This construction can be motivated
either by noticing this pattern in the diagram, noting that this method of intersecting circles
obtains angles in exactly the way needed to prove the result, or by trying to complete the
Miquel configuration. The Miquel configuration is described in greater detail in Section 5.

Solution: Let the circumcircle of triangle OBP intersect side BC at the points R and B
and let ∠A, ∠B and ∠C denote the angles at vertices A, B and C, respectively. Now note
that since ∠BOP = ∠B and ∠COQ = ∠C, it follows that

∠POQ = 360◦ − ∠BOP − ∠COQ− ∠BOC = 360◦ − (180− ∠A)− 2∠A = 180◦ − ∠A.

This implies that APOQ is a cyclic quadrilateral. Since BPOR is cyclic,

∠QOR = 360◦ − ∠POQ− ∠POR = 360◦ − (180◦ − ∠A)− (180◦ − ∠B) = 180◦ − ∠C.
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This implies that CQOR is a cyclic quadrilateral. Since APOQ and BPOR are cyclic,

∠QPR = ∠QPO + ∠OPR = ∠OAQ+ ∠OBR = (90◦ − ∠B) + (90◦ − ∠A) = ∠C.

Since CQOR is cyclic, ∠QRC = ∠COQ = ∠C = ∠QPR which implies that the circumcircle
of triangle PQR is tangent to BC. Further, since ∠PRB = ∠BOP = ∠B,

∠PRQ = 180◦ − ∠PRB − ∠QRC = 180◦ − ∠B − ∠C = ∠A = ∠PAQ.

This implies that the circumcircle of PQR is the reflection of Γ in line PQ. By symmetry
in line PQ, this implies that the reflection of BC in line PQ is tangent to Γ.

4 Spiral Similarity and Applying Transformations

One of the most useful techniques in synthetic geometry problems is applying transforma-
tions to a diagram. Often solutions to difficult problems introduce a point to the diagram
which allows for a clean quick solution. These points can often be viewed as completions of
transformations already present in a diagram. For example, a diagram may contain a paral-
lelogram ABCD in which cases there is a translation mapping AB to DC. A diagram may
contain a trapezoid ABCD with AB‖CD in which case there is a homothety mapping AB
to CD. The transformations that most commonly appear are spiral similarities, rotations,
homotheties and translations. The first few examples illustrate different ways to apply spiral
similarities. The first example is one direction of Ptolemy’s Theorem.

Example 5. (Ptolemy) If ABCD is a cyclic quadrilateral, then

AB · CD + AD ·BC = AC ·BD

Here we construct similar triangles by applying a spiral similarity with center A mapping
the C to D. We let the point B be mapped to P under this transformation.

Solution: Let P be the point on BD such that ∠APD = ∠ABC. Note that since ∠ADP =
∠ACB which implies that triangles ABC and APD are similar. This implies that triangles
ADC and APB are similar. Therefore AD

AC
= PD

BC
and AB

AC
= BP

CD
. Therefore

BD = BP + PD =
AB · CD
AC

+
AD ·BC
AC

which implies on multiplying up that AB · CD + AD ·BC = AC ·BD.

Example 6. (IMO Shortlist 2000) Let ABCD be a convex quadrilateral. The perpendicular
bisectors of its sides AB and CD meet at Y . Denote by X a point inside the quadrilateral
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ABCD such that ]ADX = ]BCX < 90◦ and ]DAX = ]CBX < 90◦. Show that
]AY B = 2 · ]ADX.

In this example we consider the spiral similarity with center B mapping line CX to the
perpendicular bisector of AB in order to obtain the angle we want Y to have at the image
Y ′ of C. We then show that Y = Y ′ in the same way as in the previous section.

Solution: Let X ′ and Y ′ be such that AX ′ = BX ′, AY ′ = BY ′, ]AX ′B = 2 · ]BXC and
]AY ′B = 2 · ]BCX. We have that AX ′Y ′ and AXD are similar, and that BX ′Y ′ and
BXC are similar. These similarities imply that triangles AXX ′ and ADY ′ are similar and
that triangles BXX ′ and BCY ′ are similar. The ratios of similarity give that

DY ′ =
AY ′ ·XX ′

AX ′
=
BY ′ ·XX ′

BX ′
= CY ′

Thus Y ′ lies on the perpendicular bisector of CD and Y ′ = Y . Therefore ]AY B = 2·]ADX.

Example 7. (IMO 1996) Let P be a point inside a triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP ,
BD, CE meet at a point.

Solution: Here we use spiral similarity to construct exactly the given angle condition. By
the angle bisector theorem, it suffices to show that AB

BP
= AC

CP
. Let Q be such that triangles

APB and ACQ are similar. It follows that APC and ABQ are similar. It follows that

∠CBQ = ∠APC − ∠ABC = ∠APB − ∠ACB = ∠BCQ

and thus BQ = CQ. Ratios of similarity finish the problem since

AB

BP
=
AQ

CQ
=
AQ

BQ
=
AC

CP

The next problem illustrates an often useful transformation when there is a midpoint of the
side of a triangle. It is often useful to perform a 180◦ rotation about the midpoint to produce
a parallelogram as in the example below which is from Challenging Problems in Geometry.

Example 8. Let ABC be a given triangle and M be the midpoint of BC. If ∠CAM =
2 · ∠BAM and D is a point on line AM such that ∠DBA = 90◦, prove that AD = 2 · AC.

Solution: There is a very short trigonometric solution to this problem, but we present a
synthetic one to illustrate the transformation mentioned above. Let D be such that ABDC
is a parallelogram. If N is the midpoint of AD, then M is the midpoint of AD. Now note

∠BND = 2 · ∠BAM = ∠CAM = ∠NDB
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and thus BD = BN . This implies that AC = BD = BN = 1
2
AD.

The next example illustrates applying translations, which are particularly useful when there
is a parallelogram in the diagram.

Example 9. (2013 British MO) The point P lies inside triangle ABC so that ∠ABP =
∠PCA. The point Q is such that PBQC is a parallelogram. Prove that ∠QAB = ∠CAP .

Solution: Let R be such that RACP is a parallelogram. It follows that ∠ARP = ∠PCA =
∠ABP which implies that RAPB is cyclic. It follows that BRP and QAC are congruent
and thus ∠QAC = ∠BRP = ∠BAP . This implies that ∠QAB = ∠CAP .

5 Geometry Facts

The theorems and facts below are many that I find useful. This list is a work in progress
so there are many useful ideas that I have omitted. I plan to add sections on collinearity,
concurrency, and miscellaneous useful facts. If any come to mind, please let me know. For
now, I have not included ideas from inversive and projective geometry. The theorems below
all apply to points in a plane. Quadrilaterals are named ABCD such that the sides of the
quadrilateral are AB,BC,CD and DA. The directed angle ]ABC is the counter-clockwise
angle between 0 and 180◦ needed to rotate line AB to line BC. A triangle ABC is taken to
have angles a, b and c.

Cyclic Quadrilaterals:

1. A convex quadrilateral ABCD is cyclic if and only if either:

(a) ∠ADB = ∠ACB

(b) ∠DAB + ∠BCD = 180◦

2. The above two conditions can be restated as a single condition in terms of directed
angles: Four points A,B,C and D are concyclic if and only if ]ABC = ]ADC.

3. (Power of a Point) Let ABCD be a convex quadrilateral such that AB and CD intersect
at P and diagonals AC and BD intersect at Q. ABCD is cyclic if and only if either:

(a) AQ ·QC = BQ ·QD or equivalently QAD and QBC are similar

(b) PA · PB = PC · PD or equivalently PAD and PCB are similar

4. Given a triangle ABC, the intersections of the internal and external bisectors of angle
∠BAC with the perpendicular bisector of BC both lie on the circumcircle of ABC.
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5. (Ptolemy’s Theorem) A quadrilateral ABCD is cyclic if and only if

AB · CD + AD ·BC = AC ·BD

6. Let ABCD be a cyclic quadrilateral such that AB and CD intersect at P and diagonals
AC and BD intersect at Q. Then:

BQ

QD
=
AB ·BC
AD ·DC

and
PB

PA
=
BC ·BD
AC · AD

7. (Polars) Let ABCD be a cyclic quadrilateral inscribed in circle Γ such that AB and
CD intersect at P and diagonals AC and BD intersect at Q. If the tangents drawn
from P to Γ touch Γ at R and S, then R, Q and S are collinear.

Circles:

1. (Power of a Point) Given a circle Γ with center O and a point P then for any line `
through P that intersects Γ at A and B, the value PA ·PB is constant as ` varies and
is equal to the power of the point P with respect to Γ.

(a) The power of P is equal to r2 − PO2 if P is inside Γ and PO2 − r2 otherwise.

(b) If PA is tangent to Γ, then the power of P is equal to PA2.

2. (Radical Axis) Given two circles Γ1 and Γ2, the set of all points P with equal powers
with respect to Γ1 and Γ2 is a line which is the radical axis of the two circles.

(a) The radical axis is perpendicular to the line through the centers of Γ1 and Γ2.

(b) If Γ1 and Γ2 intersect at A and B, then the radical axis passes through A and B.

(c) If AB is a common tangent with A on Γ1 and B on Γ2, then the radical axis
passes through the midpoint of AB.

3. (Radical Center) Given three circles Γ1,Γ2 and Γ3, the three radical axes between pairs
of the three circles meet at a common point P which is the radical center of the circles.

4. A point P is a circle of radius zero and the radical axis of P and a circle Γ is the line
through the midpoints of PA and PB where A and B are points on Γ such that PA
and PB are tangent to Γ.

5. (Monge’s Theorem) Given three circles Γ1,Γ2 and Γ3. If P , Q and R are the external
centers of homothety between pairs of the three circles, then P , Q and R are collinear.
If P and Q are internal centers of homothety, then P , Q and R are also collinear.

6. Two circles Γ1 and Γ2 intersect at R and have centers O1 and O2. If P and Q are the
internal and external centers of homothety between the two circles, then ∠PRQ = 90◦.
The lines RP and RQ are the internal and external bisectors of ∠O1RO2.
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Triangle Geometry:

1. (Angle Bisector Theorem) Let ABC be a given triangle and let P and Q be the
intersections of the internal and external bisectors of angle ∠ABC with line AC. Then

AB

BC
=
AP

PC
=
AQ

QC

2. Angles around the centers of a triangle ABC:

(a) If I is the incenter of ABC then ∠BIC = 90◦ + a
2
, ∠IBC = b

2
and ∠ICB = c

2
.

(b) If H is the orthocenter of ABC then ∠BHC = 180◦ − a, ∠HBC = 90◦ − c and
∠HCB = 90◦ − b.

(c) If O is the circumcenter of ABC then ∠BOC = 2a and ∠OBC = ∠OCB =
90◦ − a.

(d) If Ia is the A-excenter of ABC then ∠AIaB = c
2
, ∠AIaC = b

2
and ∠BIaC =

90◦ − a
2
.

3. Pedal triangles of the centers of a triangle ABC:

(a) If DEF is the triangle formed by projecting the incenter I onto sides BC, AC
and AB, then I is the circumcenter of DEF and ∠EDF = 90◦ − a

2
.

(b) If DEF is the triangle formed by projecting the orthocenter H onto sides BC,
AC and AB, then H is the incenter of DEF and ∠EDF = 180◦ − 2a.

(c) The medial triangle of ABC is the pedal triangle of the circumcenter O of ABC
and O is its orthocenter.

4. Alternate methods of defining the orthocenter and circumcenter:

(a) O is the circumcenter of ABC if and only if ]AOB = 2]ACB and OA = OB.

(b) H is the orthocenter of ABC if and only if H lies on the altitude from A and
satisfies that ]BHC = 180◦ − ]BAC.

5. Facts related to the orthocenter H of a triangle ABC with circumcircle Γ:

(a) If O is the circumcenter of ABC, then ∠BAH = ∠CAO.

(b) If D is the point diametrically opposite to A on Γ and M is the midpoint of BC,
then M is also the midpoint of HD.

(c) If AH,BH and CH intersect Γ again at D,E and F , then there is a homothety
centered at H sending the pedal triangle of H to DEF with ratio 2.

(d) If D and E are the intersections of AH with BC and Γ, respectively, then D is
the midpoint of HE.

(e) H lies on the three circles formed by reflecting Γ about AB, BC and AC.
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(f) If M is the midpoint of BC then AH = 2 ·OM .

(g) If BH and CH intersect AC and AB at D and E, and M is the midpoint of BC,
then M is the center of the circle through B,D,E and C, and MD and ME are
tangent to the circumcircle of ADE.

6. Facts related to the incenter I and excenters Ia, Ib, Ic of ABC with circumcircle Γ:

(a) If the incircle of ABC is tangent to AB and AC at points D and E and s is the
semiperimeter of ABC then

AD = AE =
AB + AC −BC

2
= s−BC

(b) If AI intersects Γ at D then DB = DI = DC, D is the midpoint of IIa, and IIa
is a diameter of the circle with center D which passes through B and C.

(c) If AI,BI and CI intersect Γ at D,E and F , then IaIbIc, DEF and the pedal
triangle of I are similar and have parallel sides.

(d) I is the orthocenter of IaIbIc and Γ is the nine-point circle of IaIbIc.

(e) If BI and CI intersect Γ again at D and E, then I is the reflection of A in line
DE and if M is the intersection of the external bisector of ∠BAC with Γ, then
DMEI is a parallelogram.

(f) If the incircle and A-excircle of ABC are tangent to BC at D and E, BD = CE.

(g) If the A-excircle of ABC is tangent to AB, AC and BC at D, E and F then
AB +BF = AC + CF = AD = AE = s where s is the semi-perimeter of ABC.

(h) If M is the midpoint of arc BAC of Γ, then M is the midpoint of IbIc and the
center of the circle through Ib, Ic, B and C.

7. (Nine-Point Circle) Given a triangle ABC, let Γ denote the circle passing through the
midpoints of the sides of ABC. If H is the orthocenter of ABC, then Γ passes through
the midpoints of AH,BH and CH and the projections of H onto the sides of ABC.

8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle
ABC, then G lies on segment OH with HG = 2 ·OG.

9. (Symmedian) Given a triangle ABC such that M is the midpoint of BC, the symme-
dian from A is the line that is the reflection of AM in the bisector of angle ∠BAC.

(a) If the tangents to the circumcircle Γ of ABC at B and C intersect at N , then N
lies on the symmedian from A and ∠BAM = ∠CAN .

(b) If the symmedian from A intersects Γ at D, then AB/BD = AC/CD.

10. If the median from A in a triangle ABC intersects the circumcircle Γ of ABC at D,
then AB ·BD = AC · CD.
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11. (Euler’s Formula) Let O, I and Ia be the circumcenter, incenter and A-excenter of a
triangle ABC with circumradius R, inradius r and A-exradius ra. Then:

(a) OI =
√
R(R− 2r).

(b) OIa =
√
R(R− 2ra).

12. (Poncelet’s Porism) Let Γ and ω be two circles with centers O and I and radii R and
r, respectively, such that OI =

√
R(R− 2r). Let A,B and C be any three points on

Γ such that lines AB and AC are tangent to ω. Then line BC is also tangent to ω.

13. (Apollonius Circle) Let ABC be a given triangle and let P be a point such that
AB/BC = AP/PC. If the internal and external bisectors of angle ∠ABC meet line
AC at Q and R, then P lies on the circle with diameter QR.

Trigonometry:

1. (Sine Law) Given a triangle ABC with circumradius R

BC

sin∠A
=

AC

sin∠B
=

AB

sin∠C
= 2R

2. (Cosine Law) Given a triangle ABC

BC2 = AB2 + AC2 − 2 · AB · AC · cos∠A

3. (Pythagorean Theorem) If ABC is a triangle, then ∠ABC = 90◦ if and only if

AB2 +BC2 = AC2

4. Given a triangle ABC and a point D on line BC, then

sin∠BAD
sin∠CAD

=
BD · AC
CD · AB

Miscellaneous Synthetic Facts:

1. (Spiral Similarity) Let OAB and OCD be directly similar triangles. Then OAC and
OBD are also directly similar triangles.

2. The unique center of spiral similarity sending AB to CD is the second intersection of
the circumcircles of QAB and QCD where AC and BD intersect at Q.

3. Lines AB and CD are perpendicular if and only if AC2 − AD2 = BC2 −BD2.

4. (Apollonius Circle) Given two points A and B and a fixed r > 0, then the locus of
points Q such that AQ/BQ = r is a circle Γ with center at the midpoint of Q1Q2

where Q1 and Q2 are the two points on line AB satisfying AQi/BQi = r for i = 1, 2.

5. Let ABCD be a convex quadrilateral. The four interior angle bisectors of ABCD are
concurrent and there exists a circle Γ tangent to the four sides of ABCD if and only
if AB + CD = AD +BC.

11
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6 Problems

The problems below have been arranged roughly in order of difficulty. I divided the problems
into three difficulty classes: A, B and C.

A1. (CMO 1997) The point O is situated inside the parallelogram ABCD such that
∠AOB + ∠COD = 180◦. Prove that ∠OBC = ∠ODC.

A2. (APMO 2007) Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB >
AC. Let I be the incenter, and H the orthocenter of the triangle ABC. Prove that
2∠AHI = 3∠ABC.

A3. (IMO 2006) Let ABC be triangle with incenter I. A point P in the interior of the
triangle satisfies ∠PBA+ ∠PCA = ∠PBC + ∠PCB. Show that AP ≥ AI, and that
equality holds if and only if P = I.

A4. (IMO 2008) Let H be the orthocenter of an acute-angled triangle ABC. The circle
ΓA centered at the midpoint of BC and passing through H intersects the sideline BC
at points A1 and A2. Similarly, define the points B1, B2, C1 and C2. Prove that six
points A1 , A2, B1, B2, C1 and C2 are concyclic.

A5. (Russia 2012) The points A1, B1 and C1 lie on the sides BC,CA and AB of the triangle
ABC, respectively. Suppose that AB1−AC1 = CA1−CB1 = BC1−BA1. Let OA, OB

and OC be the circumcenters of triangles AB1C1, A1BC1 and A1B1C respectively.
Prove that the incenter of triangle OAOBOC is the incenter of triangle ABC.

A6. (IMO Shortlist 2006) Let ABC be a trapezoid with parallel sides AB > CD. Points K
and L lie on the line segments AB and CD, respectively, so that AK

KB
= DL

LC
. Suppose

that there are points P and Q on the line segment KL satisfying ∠APB = ∠BCD
and ∠CQD = ∠ABC. Prove that the points P , Q, B and C are concyclic.

A7. (IMO Shortlist 2008) Let ABCD be a convex quadrilateral and let P and Q be
points in ABCD such that PQDA and QPBC are cyclic quadrilaterals. Suppose
that there exists a point E on the line segment PQ such that ∠PAE = ∠QDE and
∠PBE = ∠QCE. Show that the quadrilateral ABCD is cyclic.

B1. (IMO Shortlist 2000) Let O be the circumcenter and H the orthocenter of an acute
triangle ABC. Show that there exist points D, E, and F on sides BC, CA, and AB
respectively such that OD + DH = OE + EH = OF + FH and the lines AD, BE,
and CF are concurrent.

B2. (IMO Shortlist 2012) In an acute triangle ABC the points D,E and F are the feet of
the altitudes through A,B and C respectively. The incenters of the triangles AEF and
BDF are I1 and I2 respectively; the circumcenters of the triangles ACI1 and BCI2
are O1 and O2 respectively. Prove that I1I2 and O1O2 are parallel.
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B3. (IMO Shortlist 2005) Let ABCD be a parallelogram. A variable line g through the
vertex A intersects the rays BC and DC at the points X and Y , respectively. Let
K and L be the A-excenters of the triangles ABX and ADY . Show that the angle
]KCL is independent of the line g.

B4. (Tuymaada MO 2012) Point P is taken in the interior of the triangle ABC, so that

∠PAB = ∠PCB =
1

4
(∠A+ ∠C).

Let L be the foot of the angle bisector of ∠B. The line PL meets the circumcircle of
4APC at point Q. Prove that QB is the angle bisector of ∠AQC.

B5. (Japan MO 2009) Let Γ be the circumcircle of a triangle ABC. A circle with center O
touches to line segment BC at P and touches the arc BC of Γ which doesn’t have A
at Q. If ∠BAO = ∠CAO, then prove that ∠PAO = ∠QAO.

B6. (Bulgarian TST 2004) The points P and Q lie on the diagonals AC and BD, respec-
tively, of a quadrilateral ABCD such that AP

AC
+ BQ

BD
= 1. The line PQ meets the sides

AD and BC at points M and N . Prove that the circumcircles of the triangles AMP ,
BNQ, DMQ, and CNP are concurrent.

B7. (Chinese TST 2002) Circles ω1 and ω2 intersect at points A and B. Points C and D
are on circles ω1 and ω2, respectively, such that lines AC and AD are tangent to circles
ω2 and ω1, respectively. Let I1 and I2 be the incenters of triangles ABC and ABD,
respectively. Segments I1I2 and AB intersect at E. Prove that 1

AE
= 1

AC
+ 1

AD
.

C1. (Russia 2012) The point E is the midpoint of the segment connecting the orthocenter
of the scalene triangle ABC and the point A. The incircle of triangle ABC incircle is
tangent to AB and AC at points C ′ and B′, respectively. Prove that point F , the point
symmetric to point E with respect to line B′C ′, lies on the line that passes through
both the circumcenter and the incenter of triangle ABC.

C2. (Chinese TST 2005) Let ω be the circumcircle of 4ABC. P is an interior point of
4ABC. A1, B1, C1 are the intersections of AP,BP,CP respectively and A2, B2, C2 are
the symmetrical points of A1, B1, C1 with respect to the midpoints of side BC,CA,AB.
Show that the circumcircle of 4A2B2C2 passes through the orthocentre of 4ABC.

C3. (USA TST 2005) Let ABC be an acute scalene triangle with O as its circumcenter.
Point P lies inside triangle ABC with ∠PAB = ∠PBC and ∠PAC = ∠PCB. Point
Q lies on line BC with QA = QP . Prove that ∠AQP = 2∠OQB.

C4. (USA TST 2006) Let ABC be a triangle. Triangles PAB and QAC are constructed
outside of triangle ABC such that AP = AB and AQ = AC and ∠BAP = ∠CAQ.
Segments BQ and CP meet at R. Let O be the circumcenter of triangle BCR. Prove
that AO ⊥ PQ.
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C5. (RMM 2012) Let ABC be a triangle and let I and O denote its incentre and circumcen-
tre respectively. Let ωA be the circle through B and C which is tangent to the incircle
of the triangle ABC; the circles ωB and ωC are defined similarly. The circles ωB and
ωC meet at a point A′ distinct from A; the points B′ and C ′ are defined similarly.
Prove that the lines AA′, BB′ and CC ′ are concurrent at a point on the line IO.

C6. (RMM 2011) A triangle ABC is inscribed in a circle ω. A variable line ` chosen parallel
to BC meets segments AB, AC at points D, E respectively, and meets ω at points K,
L (where D lies between K and E). Circle γ1 is tangent to the segments KD and BD
and also tangent to ω, while circle γ2 is tangent to the segments LE and CE and also
tangent to ω. Determine the locus, as ` varies, of the meeting point of the common
inner tangents to γ1 and γ2.
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